Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.286
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641672

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Histonas/metabolismo , Genes da Neurofibromatose 2 , Lisina/metabolismo , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/genética , Camundongos SCID , Colangiocarcinoma/patologia , Proliferação de Células , Ductos Biliares Intra-Hepáticos/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
2.
Pharmacol Ther ; 257: 108636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521246

RESUMO

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Assuntos
Histona Acetiltransferases , Neoplasias , Camundongos , Animais , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/uso terapêutico , Domínios Proteicos , Neoplasias/tratamento farmacológico , Fatores de Transcrição de p300-CBP/metabolismo
3.
J Med Chem ; 67(4): 2466-2486, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38316017

RESUMO

Adenoviral E1A binding protein 300 kDa (p300) and its closely related paralog CREB binding protein (CBP) are promising therapeutic targets for human cancer. Here, we report the first discovery of novel potent small-molecule PROTAC degraders of p300/CBP against hepatocellular carcinoma (HCC), one of the most common solid tumors. Based upon the clinical p300/CBP bromodomain inhibitor CCS1477, a conformational restriction strategy was used to optimize the linker to generate a series of PROTACs, culminating in the identification of QC-182. This compound effectively induces p300/CBP degradation in the SK-HEP-1 HCC cells in a dose-, time-, and ubiquitin-proteasome system-dependent manner. QC-182 significantly downregulates p300/CBP-associated transcriptome in HCC cells, leading to more potent cell growth inhibition compared to the parental inhibitors and the reported degrader dCBP-1. Notably, QC-182 potently depletes p300/CBP proteins in mouse SK-HEP-1 xenograft tumor tissue. QC-182 is a promising lead compound toward the development of p300/CBP-targeted HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Proteína de Ligação a CREB/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Domínios Proteicos , Fatores de Transcrição de p300-CBP/metabolismo
4.
Am J Respir Cell Mol Biol ; 70(2): 110-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874694

RESUMO

Obstructive sleep apnea (OSA), a widespread breathing disorder, leads to intermittent hypoxia (IH). Patients with OSA and IH-treated rodents exhibit heightened sympathetic nerve activity and hypertension. Previous studies reported transcriptional activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) by HIF-1 (hypoxia-inducible factor-1) contribute to autonomic dysfunction in IH-treated rodents. Lysine acetylation, regulated by KATs (lysine acetyltransferases) and KDACs (lysine deacetylases), activates gene transcription and plays an important role in several physiological and pathological processes. This study tested the hypothesis that acetylation of HIF-1α by p300/CBP (CREB-binding protein) (KAT) activates Nox transcription, leading to sympathetic activation and hypertension. Experiments were performed on pheochromocytoma-12 cells and rats treated with IH. IH increased KAT activity, p300/CBP protein, HIF-1α lysine acetylation, HIF-1 transcription, and HIF-1 binding to the Nox4 gene promoter in pheochromocytoma-12 cells, and these responses were blocked by CTK7A, a selective p300/CBP inhibitor. Plasma norepinephrine (index of sympathetic activation) and blood pressures were elevated in IH-treated rats. These responses were associated with elevated p300/CBP protein, HIF-1α stabilization, transcriptional activation of Nox2 and Nox4 genes, and reactive oxygen species, and all these responses were absent in CTK7A-treated IH rats. These findings suggest lysine acetylation of HIF-1α by p300/CBP is an important contributor to sympathetic excitation and hypertension by IH.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hipertensão , Feocromocitoma , Apneia Obstrutiva do Sono , Animais , Ratos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lisina , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Apneia Obstrutiva do Sono/complicações
5.
Genomics ; 116(1): 110759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072145

RESUMO

OBJECTIVE: Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS: Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS: Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION: DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.


Assuntos
MicroRNAs , Osteoporose , Humanos , Osteogênese/genética , MicroRNAs/metabolismo , Osteoporose/genética , Diferenciação Celular/genética , Células Cultivadas , Histona-Lisina N-Metiltransferase , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição de p300-CBP/metabolismo
6.
J Bone Miner Res ; 38(12): 1885-1899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850815

RESUMO

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteína de Ligação a CREB , Fatores de Transcrição de p300-CBP , Animais , Humanos , Camundongos , Acetilação , beta Catenina/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Osteogênese/genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Fator de Transcrição STAT1/metabolismo
7.
Sci Rep ; 13(1): 17112, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816914

RESUMO

The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.


Assuntos
Proteína de Ligação a CREB , Fatores de Transcrição de p300-CBP , Humanos , Acetilação , Proteína de Ligação a CREB/metabolismo , Fibroblastos/metabolismo , Hipóxia , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Oncotarget ; 14: 738-746, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37477521

RESUMO

Reduced SIRT2 deacetylation and increased p300 acetylation activity leads to a concerted mechanism of hyperacetylation at specific histone lysine sites (H3K9, H3K14, and H3K18) in castration-resistant prostate cancer (CRPC). We examined whether circulating tumor cells (CTCs) identify patients with altered p300/CBP acetylation. CTCs were isolated from 13 advanced PC patients using Exclusion-based Sample Preparation (ESP) technology. Bound cells underwent immunofluorescent staining for histone modifying enzymes (HMEs) of interest and image capture with NIS-Elements software. Using the cBioPortal PCF/SU2C dataset, the response of CRPC to androgen receptor signaling inhibitors (ARSI) was analyzed in 50 subjects. Staining optimization and specificity revealed clear expression of acetyl-p300, acetyl-H3K18, and SIRT2 on CTCs (CK positive, CD45 negative cells). Exposure to A-485, a selective p300/CBP catalytic inhibitor, reduced p300 and H3K18 acetylation. In CRPC patients, a-p300 strongly correlated with its target acetylated H3k18 (Pearson's R = 0.61), and SIRT2 expression showed robust negative correlation with a-H3k18 (R = -0.60). A subgroup of CRPC patients (6/11; 55%) demonstrated consistent upregulation of acetylation based on these markers. To examine the clinical impact of upregulation of the CBP/p300 axis, CRPC patients with reduced deacetylase SIRT2 expression demonstrate shorter response times to ARSI therapy (5.9 vs. 12 mo; p = 0.03). A subset of CRPC patients demonstrate increased p300/CBP activity based on a novel CTC biomarker assay. With further development, this biomarker suite may be used to identify candidates for CBP/p300 acetylation inhibitors in clinical development.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Histonas/metabolismo , Sirtuína 2 , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação
9.
Nat Commun ; 14(1): 4103, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460559

RESUMO

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Proteína de Ligação a CREB/genética , Acetilação , Epigênese Genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
10.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511059

RESUMO

Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.


Assuntos
Neoplasias da Próstata , Serina Endopeptidases , Fatores de Transcrição de p300-CBP , Humanos , Masculino , Biópsia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Serina Endopeptidases/metabolismo , Regulador Transcricional ERG , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
11.
Nat Chem Biol ; 19(10): 1215-1222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127754

RESUMO

Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.


Assuntos
Histona Acetiltransferases , Neoplasias , Humanos , Histona Acetiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilcoenzima A/metabolismo , Ligação Proteica
12.
Bioorg Chem ; 138: 106597, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245245

RESUMO

The protein p300 is a positive regulator of cancer progression and is related to many human pathological conditions. To find effective p300/CBP HAT inhibitors, we screened an internal compound library and identified berberine as a lead compound. Next, we designed, synthesized, and screened a series of novel berberine analogs, and discovered that analog 5d was a potent and highly selective p300/CBP HAT inhibitor with IC50 values of 0.070 µM and 1.755 µM for p300 and CBP, respectively. Western blotting further proved that 5d specifically decreased H3K18Ac and interfere with the function of histone acetyltransferase. Although 5d had only a moderate inhibitory effect on the MDA-MB-231 cell line, 5d suppressed the growth of 4T1 tumor growth in mice with a tumor weight inhibition ratio (TWI) of 39.7%. Further, liposomes-encapsulated 5d increased its inhibition of tumor growth to 57.8 % TWI. In addition, 5d has no obvious toxicity to the main organ of mice and the pharmacokinetic study confirmed that 5d has good absorption properties in vivo.


Assuntos
Berberina , Neoplasias , Humanos , Fatores de Transcrição de p300-CBP/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Histona Acetiltransferases/metabolismo , Acetilação
13.
Nat Commun ; 14(1): 2439, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117180

RESUMO

Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo
14.
Sci Adv ; 9(16): eadf2687, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083536

RESUMO

Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.


Assuntos
Drosophila melanogaster , Fatores de Transcrição de p300-CBP , Animais , Acetilação , Cromatina , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histona Acetiltransferases/genética , Lisina/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
15.
Sci Rep ; 13(1): 3934, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894612

RESUMO

Accumulation of aggregated and misfolded proteins, leading to endoplasmic reticulum stress and activation of the unfolded protein response, is a hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Genetic screens are powerful tools that are proving invaluable in identifying novel modulators of disease associated processes. Here, we performed a loss-of-function genetic screen using a human druggable genome library, followed by an arrayed-screen validation, in human iPSC-derived cortical neurons. We identified and genetically validated 13 genes, whose knockout was neuroprotective against Tunicamycin, a glycoprotein synthesis inhibitor widely used to induce endoplasmic reticulum stress. We also demonstrated that pharmacological inhibition of KAT2B, a lysine acetyltransferase identified by our genetic screens, by L-Moses, attenuates Tunicamycin-mediated neuronal cell death and activation of CHOP, a key pro-apoptotic member of the unfolded protein response in both cortical and dopaminergic neurons. Follow-up transcriptional analysis suggested that L-Moses provided neuroprotection by partly reversing the transcriptional changes caused by Tunicamycin. Finally, L-Moses treatment attenuated total protein levels affected by Tunicamycin, without affecting their acetylation profile. In summary, using an unbiased approach, we identified KAT2B and its inhibitor, L-Moses, as potential therapeutic targets for neurodegenerative diseases.


Assuntos
Sistemas CRISPR-Cas , Retículo Endoplasmático , Humanos , Tunicamicina/farmacologia , Retículo Endoplasmático/metabolismo , Morte Celular , Estresse do Retículo Endoplasmático , Neurônios Dopaminérgicos/metabolismo , Apoptose , Fatores de Transcrição de p300-CBP/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834924

RESUMO

Impaired calcium uptake resulting from reduced expression and activity of the cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure (HF). Recently, new mechanisms of SERCA2a regulation, including post-translational modifications (PTMs), have emerged. Our latest analysis of SERCA2a PTMs has identified lysine acetylation as another PTM which might play a significant role in regulating SERCA2a activity. SERCA2a is acetylated, and that acetylation is more prominent in failing human hearts. In this study, we confirmed that p300 interacts with and acetylates SERCA2a in cardiac tissues. Several lysine residues in SERCA2a modulated by p300 were identified using in vitro acetylation assay. Analysis of in vitro acetylated SERCA2a revealed several lysine residues in SERCA2a susceptible to acetylation by p300. Among them, SERCA2a Lys514 (K514) was confirmed to be essential for SERCA2a activity and stability using an acetylated mimicking mutant. Finally, the reintroduction of an acetyl-mimicking mutant of SERCA2a (K514Q) into SERCA2 knockout cardiomyocytes resulted in deteriorated cardiomyocyte function. Taken together, our data demonstrated that p300-mediated acetylation of SERCA2a is a critical PTM that decreases the pump's function and contributes to cardiac impairment in HF. SERCA2a acetylation can be targeted for therapeutic aims for the treatment of HF.


Assuntos
Insuficiência Cardíaca , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Fatores de Transcrição de p300-CBP , Humanos , Insuficiência Cardíaca/metabolismo , Lisina/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
17.
Cell Biol Toxicol ; 39(2): 1-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35484432

RESUMO

OBJECTIVE: To investigate the effects of human bone marrow mesenchymal stem cells (hMSCs)-derived exosome circCDK13 on liver fibrosis and its mechanism. METHODS: Exosomes derived from hMSCs were extracted and identified by flow cytometry and osteogenic and adipogenic induction, and the expressions of marker proteins on the surface of exosomes were detected by western blot. Cell proliferation was measured by CCK8 assay, the expression of active markers of HSCs by immunofluorescence, and the expressions of fibrosis-related factors by western blot. A mouse model of liver fibrosis was established by intraperitoneal injection of thioacetamide (TAA). Fibrosis was detected by HE staining, Masson staining, and Sirius red staining. Western blot was utilized to test the expressions of PI3K/AKT and NF-κB pathway related proteins, dual-luciferase reporter assay and RIP assay to validate the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B, and ChIP to validate the effect of KAT2B on H3 acetylation and MFGE8 transcription. RESULTS: hMSCs-derived exosomes inhibited liver fibrosis mainly through circCDK13. Dual-luciferase reporter assay and RIP assay demonstrated the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B. Further experimental results indicated that circCDK13 mediated liver fibrosis by regulating the miR-17-5p/KAT2B axis, and KAT2B promoted MFGE8 transcription by H3 acetylation. Exo-circCDK13 inhibited PI3K/AKT and NF-κB signaling pathways activation through regulating the miR-17-5p/KAT2B axis. CONCLUSION: hMSCs-derived exosome circCDK13 inhibited liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fibrose , Antígenos de Superfície , Proteínas do Leite/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
18.
Clin Rheumatol ; 42(1): 253-259, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36104638

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune condition that causes progressive inflammation. It seems that alternations in epigenetic modifications contribute to RA development. The present study aimed to assess the expression pattern of K (lysine) acetyltransferase 1 (KAT1; HAT1) and lysine acetyltransferase 2B (KAT2B; PCAF), and the establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) in peripheral blood mononuclear cells (PBMCs) from RA patients. METHOD AND MATERIAL: In this case-control study, we studied 50 cases with RA in comparison to 50 age- and gender-matched healthy subjects. Separation of PBMCs samples from whole blood, extraction of RNA, and reverse transcription were performed. Gene transcript levels of KAT1, KAT2B, and ESCO2 were determined using SYBR green real-time quantitative PCR. RESULTS: Our results exhibited a significant upregulation in the expression levels of ESCO2 and KAT2B genes in patients with RA compared to normal individuals (P-value < 0.0001). Similarly, we observed higher expression of KAT1 in the patients' group when compared to the healthy controls, although the difference in expression level failed to show any significant changes (P-value = 0.485). Also, we found a positive correlation between ESCO2 and the level of erythrocyte sedimentation rate (ESR) in patients. CONCLUSION: Collectively, our results suggest that upregulated expression of KAT2B and ESCO2 genes may be correlated to RA development. Further studies with larger sample sizes are required for understanding the potential contribution of these enzymes in the pathology of RA. Key Points • Dysregulated expression level of epigenetics enzymes was observed in PBMCs from RA patients. • The expression of KAT2B was 2.44 times higher in the PBMCs of RA patients than in the healthy subjects. • The expression of ESCO2 was upregulated (2.75 times) in the PBMCs of RA patients compared to the control group. • There was a positive correlation between ESCO2 expression and the ESR level in patients.


Assuntos
Artrite Reumatoide , Leucócitos Mononucleares , Humanos , Regulação para Cima , Leucócitos Mononucleares/metabolismo , Estudos de Casos e Controles , Acetiltransferases/genética , Acetiltransferases/metabolismo , Expressão Gênica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293441

RESUMO

Increasing evidence has shown that vascular aging has a key role in the pathogenesis of vascular diseases. P300/CBP-associated factor (PCAF) is involved in many vascular pathological processes, but the role of PCAF in vascular aging is unknown. This study aims to explore the role and underlying mechanism of PCAF in vascular aging. The results demonstrated that the expression of PCAF was associated with age and aging, and remarkably increased expression of PCAF was present in human atherosclerotic coronary artery. Downregulation of PCAF could reduce angiotensin II (AngII)-induced senescence of rat aortic endothelial cells (ECs) in vitro. In addition, inhibition of PCAF with garcinol alleviated AngII-induced vascular senescence phenotype in mice. Downregulation of PCAF could alleviate AngII-induced oxidative stress injury in ECs and vascular tissue. Moreover, PCAF and nuclear factor erythroid-2-related factor 2 (Nrf2) could interact directly, and downregulation of PCAF alleviated vascular aging by promoting the activation of Nrf2 and enhancing the expression of its downstream anti-aging factors. The silencing of Nrf2 with small interfering RNA attenuated the protective effect of PCAF downregulation from vascular aging. These findings indicate that downregulation of PCAF alleviates oxidative stress by activating the Nrf2 signaling pathway and ultimately inhibits vascular aging. Thus, PCAF may be a promising target for aging-related cardiovascular disease.


Assuntos
Angiotensina II , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Ratos , Envelhecimento , Angiotensina II/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , RNA Interferente Pequeno , Transdução de Sinais
20.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142359

RESUMO

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Proteína de Ligação a CREB/metabolismo , Etilenos/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Complexo Mediador/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...